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SHEAR LAG IN BOX BEAMS
METHODS OF ANALYSIS AND EXPERIMENTAL INVESTIGATIONS

By Pavrn Koun and Parrick T. Cr1arITO

SUMMARY

The bending stresses in the covers of box beams or wide-
flange beams differ appreciably from the stresses predicted
by the ordinary bending theory on account of shear deforma-
tion of the flanges. The problem of predicting these differ-
ences has become known as the shear-lag problem.

The first part of the paper deals with methods of shear-
lag analysis suitable for practical use. The basic elements
of these methods have been published in previous papers,
but the treatment of these methods presented in this paper is
consolidated and improved in several respects. The
methods are sufficiently general to cover any arbitrary span-
wise variation of cross section and loading as well as
chordwise variations of stringer area, stringer spacing, and
sheet thickness. Methods of analyzing the effects of cut-
outs are also given.

The second part of the paper describes strain-gage tests
made by the NACA to verify the theory. Three tests were
made on axially loaded panels of variable cross section, six
were made on beams of variable cross section, and three
were made on beams of constant cross section for extreme
or limiting cases. Three tests published by other investi-
gators are also analyzed by the proposed method.

In order to make the test of the theory as severe as possible,
the NACA specimens were designed to show larger shear-
lag effects than may be expected n typical present-day
construction. The agreement was quite satisfactory even
m extreme cases such as very short wide beams. Satis-
factory agreement was also found wn tests on the limiting
case of a cover without stiffeners; this agreement shows
that the theory 1s applicable to the case of heavy cover
plates used without stiffening or to cases in which contin-
wous stiffening in the form of corrugated sheet 1s used.

The third part of the paper gives numerical examples
lustrating the methods of analysis. An appendiz gives
comparisons with other methods, particularly with the
method of Ebner and Koller. :

INTRODUCTION

The bending stresses in box beams do not always
conform very closely to the predictions of the engineer-
ing theory of bending. The deviations from the theory

are caused chicfly by the shear deformations in the
cover of the box that constitutes the flange of the beam.
The problem of analyzing these deviations from the:
engineering theory of bending has become known as the
shear-lag problem, a term that is convenient although
not very descriptive.

The most important case of shear-lag action occurs in
the wing structure. The cross section of the wing usu-
ally varies considerably along the span; analytical solu-
tions based on the assumption of constant cross section
are therefore of little practical value, and methods of
analysis have had to be developed to cope with the con-
ditions found in actual structures. The development of
such methods has been continued over a period of several
years (refercnces 1 to 3) and it is now possible to give
a reasonably well-rounded presentation of practical
methods of analysis.

The paper is divided into three parts. The first part
discusses the methods of analysis. The second part
describes tests made by the NACA and shows compari-
sons between experimental and calculated results for
the NACA tests as well as for tests made elsewhere.
Numerical examples to illustrate the methods of analysis
are presented in the third part.

The method of presentation chosen is intended to
meet the needs of the practicing stress analyst. The
paper contains the information actually needed in stress
analysis. Detailed derivations and discussions have
been omitted, but they may be found in several of the
cited references.

I. METHODS OF ANALYSIS

DEFINITION OF THE PROBLEM AND BASIC
ASSUMPTIONS

Reduced to its simplest form the problem may be
stated as follows: A sheet, stiffened or unstiffened, is
fastened to a foundation along one edge and loaded
along the two edges perpendicular to the foundation by
distributed or concentrated forces as indicated in
figure 1. The sheet may be a structure in itself
(fig.2 (a)) or it may be the cover of a box beam (fig. 2 (b)).
The problem is to find the stresses in the sheet.

1
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F1GURE 1.

As shown in figure 1, stiffencrs are theoretically
necessary along the loaded edges if concentrated forces
P arc introduced because the stresses would otherwise
become infinite. These edge stiffeners will be referred
to throughout this paper as “corner flanges” or simply
“flanges.” Other stiffeners parallel to the loaded edges
will be referred to as “longitudinals” or “stringers’;
these stiffeners may or may not exist in any given case
and may or may not be attached to the foundation.

It will be assumed that the structure is always
symmetrical about a longitudinal plane (y=0). This
assumption materially simplifics the problem without
decrcasing the practical usefulness of the theory very
much because most practical structures are at least
approximately symmetrical. On account of the sym-
metry, it will be sufficient t0 consider onc-half the
structure in all derivations and computations.

It will be assumed that infinitely many ribs of infinite
extensional (chordwise) stiffness are distributed along
the span. An equivalent assumption is frequently
made in theoretical solutions of stress problems. The
assumption is plausible in this case because 1t is fairly
obvious that the extensional stiffness of the ribs together
with the lateral bending stiffness of the flanges between
the ribs is sufficient to take care of such transverse
strosses as might arise f{rom longitudinal forces and

T
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FIGURE 2.

stresses.  The final proof that the assumption of rigid
ribs is admissible must, of course, be furnished by experi-

ments like those described in the sccond part of this.

paper.

The field of shear-lag analysis is very extensive; it
was therefore considered advisable to confine the dis-
cussion, in general, to beams with flat covers. The
most general method of analysis given in this paper can
be very readily extended to beams with cainbered covers

and this cxtension is therefore given. An approximate
method for dealing with moderate amounts of camber
is given in reference 2.

ANALYSIS OF SINGLE-STRINGER STRUCTURES

Structures like those shown in figure 2, having but a
single stringer, are rarcly cncountered in practice.
Nevertheless, the analysis of single-stringer structures
will be fully discussed for several reasons.  The immedi-
ate reason is that the fundamental relations as well as
all the methods of analysis can be easily demonstrated
on this type of structure. A more important reason is
the fact that the most rapid method of analyzing multi-
stringer structures is based on the temporary reduction
of the multistringer structure to a single-stringer

structure.
SIGN CONVENTIONS

The sign conventions adopted are as follows: Normal
stresses and strains in the stringers and the flanges are

Traure 3. -Convention for coordinate axes.

positive when they are tensile. Shear stresses and
strains in the cover sheet arce positive when they are
aused by positive strains in the flange.  Shear stresses
in the web are positive when they are causing positive
strains in the flange.

The compression side of the beam is analyzed inde-
pendently of the tension side. It is therefore permis-
sible and convenient to retain the sign convention just
given for the analysis of the compression side, changing
only the definition of stringer stresses to positive when
compressive. '

In general, the positive directions of the coordinate
axes will be taken as shown in figure 3. In some cases,
particularly for analytical solutions, it is more conven-
ient to use the opposite direction for the positive 2-
direction because the resulting formulas are simpler.
(See, for instance, formulas for axially loaded panels,
references 1 and 2.)

FUNDAMENTAL EQUATIONS AND ANALYTICAL SOLUTIONS

For purposes of shear-lag analysis, all structures are
idealized in a manner familiar, for instance, from the
design of plate girders. Stringers arce assumed to be
concentrated at their ecentroids; the idealized sheet is
assumed to carry only shear, but the fact that the actual
sheet carries longitudinal stresses in addition to the
shear is taken into account by adding the well-known
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effective width of the sheet to the stringers. The
participation of the shear web in the bending action is
expressed by adding % Aty to Ap, which makes the
section modulus of the idealized section equal to that of
the actual section. Figure 4 shows the idealized cross
sections of a single-stringer panel and of a single-stringer
beam; the standard basic symbols used in this paper are
indicated in this figure. A complete list of symbols is
given in appendix A.

Figure 5 shows an idealized single-stringer beam of
constant cross section subjected to a transverse load at
the tip. Inspection of the free-body diagrams in figure
5(b) shows that there are {wo cquations of static
equilibrium,

dm.:su%wsc (12)
dF,—dS, (1b)

where Sy is the shear force in the web, in this case equal
to P; and dS¢ = rtdx, where = denotes the shear stress in
the cover sheet.

Under the assumption of infinite transverse stiffness,
the relative longitudinal displacement (up—wuy,) of two
corresponding points on the flange and on the longitudi-

IFigure 4.—Convention for symbols on cross sections.

nal divided by the width b defines the shear strain y and
therefore the shear stress r (fig. 5 (¢)). Because the
displacements u are given by the expression

=1
o= 17

differentiation gives the basie elastic relation

. a
dr= “‘E'b'(‘fl"_ or)dz

(L)
where @ is the effeetive shear modulus, which takes into
account the effects of buckling when necessary.
Equations (1a), (1b), and (l¢) can be combined to form
a differential equation, and this equation can be solved
for simple cases. A number of solutions are given in
references 1 and 2; similar solutions have been given by
other authors. These analytical solutions are of some
value in making comparative studies and in studying
various aspcets of the shear-lag problem. For practi-
cal stress analysis, however, numerical methods capable
of dealing with arbitrary variations of cross scetion and
loading are required. Two such methods will be
described: The solution by means of a recurrence

BOX BEAMS , 3

formula and the solution by successive shear-fault
reduction.
ANALYSIS OF SINGLE-STRINGER STRUCTURES BY THE
RECURRENCE FORMULA

Principle and scope of method.—The principle of
analyzing a beam of variable cross section is as follows:
The beam is divided into a convenient number of bays
in such a way that the cross section and the running
shear in the web Sy /h may be assumed to be constant
within each bay. The shear deformation in the cover
sheet of ecach bay is computed in terms of the unknown
forces acting between bays.  Application of the princi-
ple of consistent deformations then gives a set of
equations, similar in form to three-moment cquations,
for the unknown forces.

= -
Sw%\ Fp+dFy
\
|
[+
\
—

FIGGRE 5.—Free-body diagrams of heam,

Theoretically, the method permits taking into account
any variation of cross section and loading along the
span. The limitations arc similar to those encountered
in other problems of stress distribution in cases of
variable cross scetion and loading.

Recurrence formula for shear lag.—As stated in the
preceding section, the beam is divided into a number
of bays; the cross section and the web shear Sy /h are
assumed to be constant within cach bay. The lengths
of the bays need not be equal nor need they be small,
as is often required in similar methods. In the limit,

“a single bay may span the entire length of the beam.
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The system of numbering the stations and the bays
between stations is shown in figure 6.

Each individual bay can now be treated as a free
body subjected to certain forces (fig. 7). These forces
can be split into two groups (fig.8): One group consists
of the forces calculated by the ordinary bending theory,
which assumes no shear deformation; the other group
represents the differences between the actual forees and

n-1 2y T

Fi6URE 6.—Convention for numbering hays and stations of a heam.

the forces of the first group or, in other words, the
changes in forces caused by the shear deformation of
the cover sheet.

The first group of forces will be designated P-forces
to indicate that they are calculated by the theory that
assumes plane scetions to remain plane. Individual
forces and stresses belonging to this group will be de-
noted by a superseript P. The calculation of these
forces and stresses is familiar to every engincer and
consequently need not be discussed in detail.

The second group of forces will be designated X-forces.
Because the P-forces on any one bay are in static equilib-
rium, the X-forces at any one station must be a self-

-t

FIGURE 7.—Free-body diagrams of bays.

equilibrated group longitudinally; that is, at any given
station the force Xr acting on the flange must be equal
and opposite to the force X, acting on the longitudinal.
This conclusion was anticipated in figure 8 by writing
X without the subseripts #' and L.

The shear deformation of the cover sheet can now be
calculated in terms of the known P-forces and the
unknown X-forces; the details of this calculation are

given in reference 3. Hquating the deformations at
the adjoining ends of successive bays yields the
recurrence formula

AYR—IQH,“— IYn (Z’u + Z)VL+I) h{ ‘Yn—{ l_qn»H = Yn + Yntt (:‘

where

~

K 4
P=Gt tanb KL (38)
K
O G sinh KL (3b)
_ Swdy_SuQ 60

"ThtAGT TG

where K is a shear-lag paramcter appearing in all

(a) P-forces.
(b) X-forces.

FiGURE 8.—Separation of forces acting on bays.

analytical “solutions for single-stringer structures
(references 1 and 2) and is defined by
Gt/ 1 1
2 2 4
K=p\ 1,74,/ @)

In equations (3a) to (3c), each individual quantity
should be understood to have a subscript n, indicating
the average value for the bay in question. Note
should be taken that this statement applies to L, which
is to be taken as the length of the individual bay in
question, not as the length of the entire beam.

Strictly speaking, all coefficients v appearing in this
paper should have a superseript P.  These superseripts
have been omitted because they are not needed in the
actual use of the equations; they are needed only in
the derivation of the cquations (reference 3).
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Written in more explicit form, the equations are

1Y0Q1_X1 (271+])2) ‘|“1Y292: =Y+
Xi@e— X (P2t p3) + Xags= — 72+ 73

sz—lQ?z_XL(piz+p7z+1) +)\IL+IQWL+1 =Y + Yn41

1YT—lq_r_Xr(/pr+Pr+l) - —'Yr+ Yrit

It will be noted that the externally applied load appears
only in the coeflicients v; for any given beam, then,
the left-hand side of the equations remains unchanged
if changes occur in the loading.

|
!
J @)

5

practice when a wing is joined to carry-through mem-
bers passing through the fuselage. Case 3 has been
used in practical design to facilitate the assembly of
the wing to the fuselage by reducing the number of
bolts to a minimum. ,

The foundation may be considered as bay r-1.

In case 1 there is no shear deformation of bay r-+1,°

and p,41 as well as v, equals zero. In case 2, vy,

equals zero, because no shear is carried in' bay r--1;
the deformation of the bay depends only on the axial
stiffnesses of the flange and the longitudinal passing
through the fuselage, and

1 1\ L
po=(a+ 4, i

(7)

FiGURE 9.—Boundary conditions at tip.

Boundary conditions.—Before the system of equa-
tions (5) can be solved, the boundary conditions at the
tip and at the root must be defined. At the tip, the
following cases may arise: '

(1) Only a transverse force is applied (fig. 9 (a)).
In this case, X,=0.

(2) A longitudinal force P may be introduced
(fig. 9 (b)). In this case

T y 444
X=PE

T

(6)

When the longitudinal force P is the only force applied
to the beam, the idcalized shear web is inactive, and
the problem is that of an axially loaded panel.

At the root, the following cases may arise:

1. The flange and the longitudinal arc connected
to a rigid foundation.

2. The flange and the longitudinal are connected
to a foundation that deforms under load.

3. The flange is connected to the foundation; the
longitudinal is not connected.

This system of classifying the posrible cases is based
on the convention of defining the foundation as the
station where the vertical shear is taken out.

-Case 1 at the root arises in practicc when a wing is
continuous from tip to tip. The plane of symmetry is
equivalent to a rigid foundation. Casc 2 arises in

" where L is the distance {rom the wing root to the planc
of symmetry of the airplane.
In case 3 the last equation of the system cannot be
used, and X, is found by inspection to be
b _ M A4

—}TW AT (8)

Calculation of stresses from X-forcesi—After the

system of equations (5) has been solved, the longi-

tudinal stresses are found by superposing on the
stresses calculated by the ordinary bending formula
the stresses calculated from the X-forces

or=o5 + X/ Ar (9a)

and

0L~ GLP_X/AL (9b)

where ¢ is the stress calculated by the ordinary bend-
ing formula. In the case under discussion, where the
beam has no camber,

M

P__ P__
O — 0y —h—A;

(10)

The running shear in the cover sheet of bay n close
to the inboard end of the bay, that is, close to station =,
is given by the formula

SA4, K, X K,

(112)

(rt)n;=

7L ) T G KL, T tanh KL,

BN
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Near the outboard end of bay m, that is, near station
n—1, the running shear in the cover shect is

SAL e Kn ” Kn
hA, n+‘X"‘1 tanh K,L, X sinh K, L,

(t),,= (11b)

For some applications it is desired to compute the
average running shear in a bay. If the bay is not too
long, this average shear may be obtained by averaging
the shears at the two ends of the bay computed by the
formulas just given. The result is

SA 1
(Ttn)ab:<m>n_§Gt(Xn_Xn—l) (pn+gn) (110)
An alternative way to compute the average shear is
to use the basic static relation (1b)

(rtL),=F,, — (11d)

s
Formula (11d) gives the true average; formula (11c¢) is
approximate. '

Influence of taper in depth and width.—When a
beam is tapered in depth, it is necessary to.remember

- that part of the vertical shear is carried by the inclined
flanges and longitudinals, so that

SW=SE—%/[ tan 1 (12)
where 7 is the inclination of the tension flange with
respect to the compression flange.

When a beam is tapered in width, neither the ordi-
nary bending theory nor the shear-lag theory is strictly
applicable. The crror caused by applying the ordinary
bending theory, however, is small for normal angles of
taper; to a similar degree of approximation, the follow-
ing approximate method of shear-lag caleulation may
be used.

Assume that the taper is removed by making the
widths b at all stations equal to the width b, at the root.
At the same time, increase the sheet thicknesses in the
ratio b,/b. The result will be an untapered beam that
has the same shear stiffness Gt/b at any station as the
actual beam. This method of procedure assumes that
transverse components of longitudinal forces can be
negleeted; this assumption is in keeping with the
assumption of rigid ribs.

It should be noted that the parameter K (cquation
(4)) in any bay of the fictitious untapered beam is equal
to the corresponding parameter K of the actual tapered
beam, but the coeflicients p, ¢, and v of the fictitious
beam differ from those of the actual beam by the ratio
b/b,. Tt is'stated in reference 3 that the effect of taper
in plan form might be more pronounced than is indicated
by the method just given. Re-examination of the test
data in the light of the additional test expericnce gained
since reference 3 was written tends to show that the
method given here is sufficiently accurate for the taper
ratios likely to be encountered on wings.

ANALYSIS OF SINGLE-STRINGER STRUCTURES BY SUCCESSIVE
SHEAR-FAULT REDUCTION

Principle and scope of method.—The principle of
the method of sucecessive shear-fault reduction is as
follows:

An estimate is made of the stresses op in the flange;
the stresses o in the longitudinal are caleulated by
statics. By the application of the basic equation (1c)
and a process of numerical integration, the spanwise
distribution of shear force in the sheet can then be cal-
culated. On the other hand, application of the basic
cquation (1b) also gives a spanwise curve of shear force
in the sheet.  The two curves will not agree except by
accident because the estimated values of o and oy will
not fulfill the elastic relations and the boundary condi-
tions except by accident. The difference between the
two curves will be referred to as the curve of “shear
faults.”

The existence of shear faults in the calculation proves
that the assumed stresses op do not constitute the true
solution of the stress problem for the specified external
loads. The assumed stresses or constitute, however,
the true solution for a closely related problem, namely;
the structure subjected to the specified external loads
and, in addition, subjected to a system of external
loads equal to the shear faults. Obviously, then, the
desired solution can be obtained from the assumed solu-
tion by deducting the effects of the shear faults. This
deduction is cffeeted by superposing the effects of cor-
rective external shear forces that are assumed to be
applied in opposite direction to the shear faults.

If the magnitudes of the corrections were made equal
to the faults, the basic static equation (1b) would be
fulfilled at cach station but the basic clastic relation
(1e) would be upset. As a compromise between these
conflicting requirements, the correction is made equal
to one-half the fault.

Because transverse forces are absorbed by the rib
system and are not considered, the introduction of an
external shear is equivalent to the introduction of a pair
of equal and opposite forces. By St. Venant’s prinei-
ple, the influence of such a combination of forces is felt
over only a limited distance. In order to simplify the
computation, it will be assumed that the influence of
cach corrective force decreases to zero at the next sta-
tion. Krrors introduced by this simplification will be
small and will eventually be eliminated by repeating

" the process of correction,

Application of the corrective forces to the initially
assumed values of oy and o, yiclds a new set of values
for or and oz, and the entire process is repeated. It will
be found that the corrective forces are becoming smaller
with each repetition of the process, so that the solution
will be obtained by a sufficient number of repetitions.
In theory, the computation. is finished when the correc-
tions to o and ¢y are reduced to one unit of the last
significant figure of oz or o,. In practice, the compu-
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tation will often be finished sooner at the discretion of
the analyst.

For single-stringer structures, the method of suceces-

“sive shear-fault reduction is unlikely to be favored over
the recurrence formula because the time required for a
solution depends very much on the ability of the analyst
to make a good initial estimate of ¢p and o;.  The time
required for a solution by means of the recurrence for-
mula, on the other hand, is almost independent of the
skill and the experience of the analyst because the only
item left to his choice is the number of bays. The
method of shear-fault reduction for single-stringer
structures, however, is the direct basis of the most
general method for analyzing multistringer structures,
and this fact justifies the description of the method.

Method of successive shear-fault reduction.—In
order to apply the method of shear-fault reduction, the
boam is divided into a convenient number of bays.
Because the computation involves numerical integra-
tion and differentiation, the lengths Az of these bays
must be chosen fairly small so that no appreciable error
is made by assuming the stresses to vary linearly in
cach bay. Five bays may be considered as the mini-
mum. In order to reduce the time required for com-
putation and the possibility of errors, the bays should
be made of cqual lengths whenever feasible.

The computation is started by tabulating for cach
station the given magnitudes of Ar, Az, ¢, G, and M/h
(or P) if they vary along the span. If the beam tapers
in width, a fictitious beam of constant width is used, as
previously discussed.

The magnitudes just enumerated should be separately
tabulated because they will remain constant; whereas,
the main part of the calculation is repeated a number
of times. The details of the procedure are learned most
casily by following column. for column the numerical
example given in part 111, table 10.

Column 1 in table 10 gives assumed values for op.
In assuming these stress values, the analyst must be
guided by previous cexperience. It is possible to use
entively arbitrary values but, if the assumed values
differ too much from the true ones, a large number of
cycles of the computation will be required. The
simplest procedure for general use is to multiply the
stresses obtained from the ordinary bending theory by
a factor slightly larger than unity. With some ex-
perience, this factor can be cstimated reasonably well
from a knowledge of the average of the shear-lag pa-
rameter KL and the loading condition.

Column 2 gives the forces Fr=opAs.

. M .
Column 3 gives the forces FL:-)L»—FF in the case of

a beam or F,=P—Fy in the case of an axially loaded
panel.

Column 4 gives the stresses o, =Fy/A;.

Column 5 gives the differences between columns 1 and
4 (or—o01).
477389—43-——-2

,half step would be used again.

Column 6 gives the increments of shear stress
obtained from the basic relation (lc),

GAx

AT:_W(O’F”—(TL) (SS-1)

It will be noted that the values of Ar in column 6 are
positive. This sign arises from the fact that the integra-
tion of the shear-stress increments proceeds from the
root to the tip so that the increments Az are negative.

Column 7 gives the shear stresses r in each bay.
These stresses are obtained by adding up the increments
A7 given in column 6, starting at the root where 7=0.
It should be noted that the values of Ar represent the
increments of shear stress for intervals of length Az
along the span; the distance between the root and the
middle of bay r is, however, only half an interval Az, so
that the value of 7 in the root bay is r=4¥Ar. From
here on, the full value of A7 is added each time, unless
the value of 7 at the tip is to be calculated when a one-
(The value of 7 at the
tip is needed for the calculation of the margin of safety
but it is not needed for the calculations indicated in
table 10. Consequently, this value is calculated only
after the last cycle has been completed.)

F L F L

{ i
SFC{ lSF SF[ L SEC
: | }

(a) (b)
STTTTTTTT07 0777707777
FiaURE 10.-- -Shear fault and shear-faull correction.

Column 8 gives the increments of shear force
ASep=rTtAx (8S-2)

Column 9 gives the increments A, obtained by sub-
tracting the value of F, at the outboard end of the bay
from the value of Fy, at the inboard end of the bay.

According to the basic relation  (1¢), AF; should
equal AScr in each bay. The differences in each bay
constitute the shear faults

SIﬂ: ASCE_ AFL

and the shear faults SF are given in column 10.
Consider now figure 10 (a), which shows one bay with
a positive shear fault SF and the corresponding shear-
fault correction SFC; SFC is in the form of external
forces distributed uniformly along the bay.
The length of a bay is small compared with the length
of the structure; it may thercfore be assumed that the

(8S-3)
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properties of the structure just outboard and just in-
board of the bay considered are the same. Under this
assumption, one-half of the shear-fault correction SFC
will be absorbed by the structure outboard of the bay;
the other half will be absorbed by the structure inboard
of the bay. As previously stated, the total shear-fault
corrective force will be taken as one-half the shear fault.

Total SFO— ~%SF (SS-4)

Therefore the corrective forece at the outboard end of
the bay will be

SFC,— —%SFO:iSF (SS-5a)

and the corrective force at the inboard end of the bay
will be

SFOF%SFO: — }iszf (SS-5b)
The corrective stresses Agp and Agy, are found by divid-
ing the corrective forces SFC, and SFC; by the arcas
Ap or Az and are shown in figure 10 (b). The signs of
the corrective stress Aoy arce the signs given in formulas
(85-5a) and (SS-5b), while the signs of the corrective
stresses Ac;, are opposite to those given in formulas
(SS-5a) and (SS-5b) (fig. 10 (b)).

At the tip station there is no outboard structure to
develop any resistance to the shear-fault correction
force. Consequently, for the tip bay

SFC,=-0
SFC,=SFC - %S r

(SS-5¢)
(8S-5d)

In the numerical example (table 10) it will be seen
that column 11 lists the values of SFC, and column 12
lists the values of SFC,;. At cach station there is onc
value of SFC, and one value of SFC,. The sum of the
two values is the final value of the shear-fault corree-
tive force and is tabulated in column 13.

Column 14 gives Aop=SFC/A, and column I
Ac,=—SFC/A,.

The addition of the corrections Asp to the initially
assumed values of o and of the corrections Acy, to the
initial values of o, gives a new set of values for o7 and oy,
The entire process is then repeated as indicated in
table 11 but the column giving Fr is no longer needed.

The entire calculation as shown in table 11 is re-
peated again-and again until successive sets of values
of oy and o, are judged to agree with sufficient accuracy.
The limit of possible accuracy is reached when the
values of Agy or Agy, become equal to unity in the last
significant figure of o or o;.

In order to avoid carrying along errors, F}, should be

5 gives

obtained from the static equation F L:TmFF every
)

second or third cycle instead of from Ay,

The sum of the shear faults may be used as an indica-
tion that correct sign conventions have been used; the
sum of the faults in any given cycle must be smaller

than the sum of the faults in the preceding eycle. This
criterion is not sufficiently sensitive to prove the absence
of any numerical error, but it is sometimes a welcome
help when starting calculations.

A complication arises when the longitudinal is not
connected at the root. In this case, the stress o, is equal
to zero at the root but the shear stress « is not equal to
zero. It is therefore impossible to proceed directly
with the summation of the increments Ar.  In order to
overcome this difficulty, a trial value 7, for = at =0
is assumed, and the summation proceeds from this trial

value. From statics, it is evident that
z=1I
LSY()E: 2 AkqC]g = 0
a=l)

The trial value 7o must therefore be negative, in order
that the summation of the increments ASe¢r along the
entire span may be cqual to zero. On the first trial,
this condition will not be met except by accident, and
the trial value for 7, must be adjusted until the given
condition is met. Speaking graphically, the process
consists in finding the avea between a curve (the 7t-
curve) and an arbitrary horizontal line and then
shifting the horizontal line until the area becomes zero.
After the first cycle has been completed, the value =,
obtained can be used as a trial value for the second eyele,
and it will be so close that the necessary adjustment will
be small.

When the longitudinal is discontinuous at some point
other than the root, the summation of the inerements Ar
may be performed in the usual manner for the region
between the root and the inboard end of the break.
The region from the outhoard end of the break to the
tip is treated in a manner analogous to that just dis-
cussed for a longitudinal discontinuous at the root.

In a cambered beam, the basie equation (1¢) must be
modified to read

f

dr= —IL{[;, {(op—0p) — (opF—a, )] di (1e")
as shown in reference 2. In this cquation, ¢,” is the
stress in the flange calculated by the usual Me/I formula,
and o7 1s the stress in the longitudinal caleulated by the
Mec/I formula. In the casc of a flat cover, o’ equals
ol and they cancel, reducing equation (1¢’) to equation
(t¢). When a beam is analyzed by the shear-fault-
reduction method, formula (SS—1) must be modified to
conform with formula (1¢’). An additional column will
therefore be required after column 5 in table 10.

ANALYSIS OF MULTISTRINGER STRUCTURES

Two methods will be given for the analysis of multi-
stringer struetures. The first method consists in reduc-
ing the problem to that of a fictitious single-stringer
structure that can be analyzed by the recurrence
formula. The final step of transferring back to the
actual multistringer structure can be made only under
the assumption that the chordwise distribution of
material-—stringers and sheet—is uniform and that the
moduli £ and ¢ are constant along the chord. Small
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variations from uniformity can be disrcgarded but,
when large variations exist, it is desirable to have a
more gencral method available. For such cases, a
- method of successive shear-fault reduction is described
that is an extension of the method of successive shear-
fault reduction described for single-stringer structures.
This method permits taking into account arbitrary
chordwise variations of stringer size, stringer spacing,
sheet thickness, and elastic moduli.
SUBSTITUTE SINGLE-STRINGER METHOD

Principle of method.—The transverse bending loads
acting on a box beam are taken up first by the shear
webs.  The shear stresses in the web are partly con-
verted into normal stresses at the flange; the rest of
the stresses become shear in the cover sheet, which is
gradually converted into normal stresses in the longi-
tudinals as the longitudinal plane of symmetry is
approached. It may be said, therefore, that the most
important physical action centers around the flange
because the conversion of shear stress into bending
stress begins here.

This consideration leads to a very convenient method
of analyzing a multistringer structure by substituting
temporarily a fictitious single-stringer structure. This
fietitious structure retains without change those parts
of the actual structure in which the primary and the
most important action takes place, namely, the shear
web, the corner flange, and the sheet adjacent to it.
The longitudinals, however, are combined into a single
fictitious stringer, the “substitute single stringer,”
located at the centroid of the internal forces in the
stringers. The analysis of the resulting single-stringer

structure can be performed by the methods previously

described and gives the actual stress in the flange
(equation (9a)) as well as the actual shear stress in the
cover sheet next to the flange (equations (11)). For
the stress in the longitudinals, only an average value is
obtained by the analysis of the fictitious single-stringer
structure. The stresses in the individual longitudinals
of the actual structure are calculated at any given sta-
tion along the span by assuming that the average
stress just caleulated is distributed chordwise according
to the hyperbolic-cosine law found in such analytical
solutions as have been published.

The validity of the substitution method outlined
can be made plausible in a general way by referénce to
St. Venant’s principle. A much more convineing proof,
however, will be given by the comparisons between
experimental and calculated results in the second part
of this paper.

Determination of the substitute single-stringer struc-
ture (first approximation).—A typical cross section of a
multistringer structure is shown in figure 11 (a). This
cross section is idealized as indicated in figure 11 (b).
It should be noted that the effective width of skin
adjacent to the flange is considered as a longitudinal
distinct from the flange. The adoption of this rule

malkes it feasible to cover all possible cases with a single
rule because in a limiting case such as shown in figure
1, for instance, obviously the entire sheet should be
considered as constituting the longitudinals. Inciden-
tally, this rule tends to reduce the error due to the finite
number of stringers that will be discussed.

d JT d ]L d’—;i
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FiraurE 1h.—Idealization of multistringer eross section.

The width d of the idealized sheet between longitu-
dinals depends on the spacing b; between rivet rows and
on the type of the stiffeners. Open-section stiffeners
(fig. 12(a)) do not contribute to the shear stiffness of
the cover; therefore, d==b;. Closed-section stiffeners
(fig. 12 (b)) contribute to the shear stiffness of the cover.
If this contribution is taken into account, the idealized
width for shear deformation is d==b,-} by, in which

b,
b= Ly

o

(13)

where £, is the thickness of the stiffener and p is the
perimeter, or developed width, of the stiffener between
rivet rows.
e i
H R T T P

(&) e (b)

FIGURE 12.—Standard symbols for width of panels.

The idealized multistringer structure (fig. 11(b)) is
now converted into a single-stringer structure by com-
bining all idealized longitudinals into a single longi-
tudinal Jocated at the force centroid of the longitudinals.
Because the actual stresses are not known at this stage,
the stresses computed by the ordinary bending theory
are used to obtain a first approximation. For the flat



10

covers under consideration, the force centroid will then
be the centroid of the cross-sectional areas of the
stringers, the Me¢/I stress being the same in all stringers.
The distance of this centroid from the flange is the
width bs of the substitute structure (fig. 11(c)). The
substitute structure can be analyzed by the recurrence
formula or by any other method if desired. If a second
approximation is to be made, the calculations made for
the first approximation can be confined to finding the
stresses or in the flange and o, in the longitudinal of
the single-stringer structure.
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In order to facilitate the determination of Y6, figure
13 has been prepared. With the help of this figure,
Yb can be determined by inspection after computing
the ratio o /o,. The stress at the center line is then
computed by the formula

aer,=op/cosh Y

(16)

In order to compute the stress in any stringer at a given
distance y from the center line, it is only neccssary to
compute Yy=(Yb)X (y/h) and to apply formula (14).

Formulas (14) to (16) apply only when 0<Zaz/op<l1.
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FiraurE 13.—Auxiliary graph for determining ehordwise distribution of stresses.

Chordwise distribution of stresses.—The analysis of
the substitute single-stringer structure furnishes the
flange stress o and the chordwise average of the stresses
in the longitudinals for all stations along the span.  The
actual chordwise distribution of the stresses may be
obtained in the following manner, as explained in
reference 1.

For the limiting case of infinitely many stringers,
some analytical solutions have been obtained in the
form of solutions for the continuous cover sheet.
These solutions show that the chordwise distribution
of the stringer stresses at any given station follows a
hyperbolic-cosine law. The stress at a distance y
from the center line may therefore be written as

c=o¢rcosh Yy (14)

where Y is an auxiliary parameter and o is the value
of ¢ at y=0. In this equation, both the stress oy in
the longitudinal at the center line and the auxiliary
parameter Y are unknown. Two conditions are avail-
able to determine these unknowns: (1) The average of
the stresses ¢ between y=0 and y=5 must be equal to
the stress o, of the substitute single stringer, and (2)
at the flange y=>5, the stress ¢ must cqual the stress

op. The result is a transcendental equation for Yb,
tanh Yb o
Yh on. (15)

In regions critical for design work, this condition is
probably always fulfilled. For certain purposes such
as checking the theory against experimental results,
however, it may be desired to calculate the chordwise
stress distribution at stations where the ratio o7/ox falls
outside of this range. It was proposed in reference 1
to replace formulas (14) to (16) for such cases by

o=o0a¢r,(2—cosh Y) (14a)
_sinh Vb
R (/) (152)
9—cosh Yb  op
oo =0p/(2—cosh Yb) (16a)

Formula (15a2) was used instead of formula (15) to
extend the range of the Yb-curve in figure 13. It will
be noted in figure 13 that the Yb-curve for very small
negative values of oz/or does not become infinite as
would be cxpected by analogy with small positive
values. This peculiarity is caused by the approximate
nature of equation (14a) and is of no practical im-
portance.

Correction of chordwise stress distribution for finite
number of stringers.—The method of computing string-
er stresses by using formula (14) is based on the assump-
tion that the stringers are infinitely closely spaced. 1f

the spacing of the stiffeners is finite, the total internal
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foree will be found by a summation instead of an inte-
gration, and the internal force will differ somewhat
from the external force. The magnitude of the error
depends on the number of stringers and on the curva-
ture of the chordwise stress plot, which is characterized
by the ratio ¢,/04 or by the parameter V.
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FirGUuRrE 14.—Krror in total force caused by finite number of stringers,
stringers, except stringer contliguous to flange.

n, number of

The sign of the error depends on the location of the
first stringer near the flange.  Under the rules given
for idealizing the multistringer cross scetion, the first
full-size stringer is located at y=b (1—1/n), where n
is the number of stringers (arrangement A, fig. 14).
For this case the summation of the stringer forces will
yield a smaller foree than is necessary to balance the

11

external load. If a full-size stringer were located at
the edge y=>5 (arrangement B, fig. 14), the summation
of the stringer forces would yield too large a value.
As long as Yb is less than about 1.5, the errors for these
two cases are numecrically equal and are shown in
figure 14.

The rule that the effective width of skin adjacent to,
the flange should be considered as a stringer (fig. 11 (b))
helps to reduce the crror by bringing the actual case
between the two extreme arrangements A and B of
figure 14. In practice, the ratio of the actual force to
the summation of the calculated stringer forces may
be applied as a correction factor to the calculated
stringer stresses as illustrated by the numerical example
in part ITI. This method of correction was used in
the analysis of all NACA tests described in part II
with very satisfactory results, even in some quite
extreme cases; it was also used with very satisfactory
results in making comparisons with the Ebner-Koller
method.  (Sce appendix B.) If the results obtained
by this method should be considered as too inaccurate,
the method of successive shear-fault reduction may be
resorted to for improving the accuracy of the results.

Successive approximations for substitute width.—By
definition, the substitute width is the distance from the
flange to the force centroid of the stringers. For in-
finitely many stringers, the centroid can be found by
integration (reference 2), and its location is shown

graphically in figure 15. The substitute width is
given by the expression
bS:( —%’—‘)b (17)

In any given case, the factor 1—(y,/b) is taken from
figure 15, and b is the effective width for shear deforma-
tion as defined by figure 11 (b).
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Fiaurk 1o.—Graph for locating resultant internal force.
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In order to use figure 15 it is necessary to know the
parameter Yb; for this reason it is necessary to make
successive approximations. In the first approximation
it is assumed that there is no shear lag; in this case
Yb=0 and 1— (y./b) =0.5.

. . . b . .
the substitute width is therefore bsI:—Z—; and with thls

width the first analysis is carried out as previously
discussed. The stresses o and oz, are caleulated for the
substitute single-stringer structure, and for each station
the ratio oy/op is calculated and used to determine the
value of Vb from figure 14. The spanwise average of
Yb is then calculated and the corresponding value of
1—(y/b) is found from figure 15. This new value of
1— (y,,/b) is inserted in formula (17) to obtain the second
approximation to bs, and the analysis of the substitute
single-stringer structure is repeated with the changes
necessitated by changing the substitute width.

Tf the stresses op and o obtained in the second
approximation differ very much from the stresses ob-
tained in the first approximation, a third approximation
may be made. On account of the rapid convergence of
the process, the difference between the first and the
* second approximations need not be very small to insure
that the second approximation may be taken as final.
It is suggested that the stress analyst work some
examples by means of the analytical formulas given in
reference 2. As a rough guide, it may be stated that,
if the accuracy of the 10-inch slide rule is used as a
criterion, the second approximation may be con-
sidered as the final one when the shear-lag parameter
KL for the entire beam is greater than 4 in the first
approximation. When KT is about 7 or greater than 7
in the first approximation, the first approximation is
sufficiently accurate. These relations are also
fluenced to some extent by the ratio Ax»/4;.

The outlined procedure should be slightly modified for
axially loaded panels. In such panels, the value of Yb
becomes infinite at the station where the axial load is
introduced. In order to avoid this difficulty, the span-
wise average of the ratios oz/or should be found and ¥
for the average ratio op/or should be determined. This
method may be applied to beams in many cases and
the final results obtained by the two methods will be
the same, at least for practical purposes. It is prefer-
able, however, to use the two distinet methods to avoid
uncertainties in procedure.

The method given for finding successive approxima-
tions to bs applies directly only when there are infinitely
many stringers. When there are only a few stringers,
the first approximation bs, is not equal to 6/2 but is
determined by the centroid of the areas of the stringers
as discussed in connection with figures 11 (b) and 11 (c¢).
In such cases, it may be assumed that the ratio of a
higher-order approximation of bs to the first approxima-
tion bs, is the same as though there were many stringers;

in-

The first approximation to |

any higher-order approximation to the substitute width
is then given by the expression

bS:2bS1(1 —ybb (17x)

where the factor 1-(y./0) is determined as before frorﬂn
figure 15.

METHOD OF SUCCESSIVE SHEAR-FAULT REDUCTION

Principle and scope of method.—The analysis of
multistringer structures by successive shear-fault redue-
tion employs the same basic procedure that is used for
the analysis of single-stringer structures. Some mod-
ifications and additional conecepts are, of course, re-
quired to adapt the method to the mueh more compli-
cated problem of analyzing multistringer structures.

The process of successive shear-fault reduction in a
single-stringer structure consists in a repetition of
adjustments on a spanwise sequence of clements. Tt is
obviously not feasible to carry on such a process of
adjustments at the same time on chordwise sequences
of clements. In order to overcome this difficulty, a
concept will be introduced that has become quite
familiar through the Cross method of moment distribu-
tion, namely, the concept of locking parts of the struc-
ture in place to isolate the part being adjusted from the
rest of the structure. The particular method of locking
employed herein consists in locking certain stringers at
a given state of longitudinal strain, or, to use a deserip-
tive expression, in imagining them to be frozen solid.
The stringers locked at any given time are the stringers
to either side of the one being adjusted. The stringers
are adjusted in sequence, starting from the flange and
proceeding to the center-line stringer. The process is
repeated until the agreement between successive cycles
of the computation is considercd satisfactory.

The method is obviously more laborious than the
substitute single-stringer method. It is very general,
however, and is capable of taking into account chord-
wise variations of stringer spacing, stringer arca, sheet
thickness, and shear modulus; it can also deal more suc-
cessfully with structures having a very small number of
stringers (two or three).

In practice, it will probably be found advantageous,
in general, to use the substitute single-stringer method
to obtain a first approximation. Average values are
used wherever necessary. The method of shear-fault
reduction can then be used to improve the accuracy of
the results.

The method of shear-fault reduction has one advan-
tage that may be helpful at times. After the constants
have been computed and the first cycle has been com-
pleted, the work involved in succeeding cycles is so
simple that it can be handled by computers with little
engineering training.
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Procedure for computation.—The computation is
started by assuming initial values for the stresses in all
stringers A to F (fig. 16), taking care that at cach sta-
© tion the summation of the internal forces equals the
oxternal force M /b or I, -

The flange A is adjusted first. In order to effect
this adjustment, the stringer B is locked at the state of
stress initially assumed. The computation then pro-
ceeds in practically the same manner as described for
single-stringer structures; the only difference is that
the values of ¢ (in this case o) are not changed but
remain. the same for all cycles.  After a number of
eycles-—say five cycles—the adjustment of stringer A
1s stopped, and stringer A is locked at the state of stress
just computed.

Before the adjustment ol stringer A was started,
static equilibrium existed between the internal stringer
stresses and the external load at cach cross section.
After the adjustment, cquilibrium no longer exists;
before the adjustment of stringer B is started, it will

A B C D E F

FIGURE 16.

be necessary to restore this equilibrium. To this end,
the stresses in stringer B are increased or decreased
so that the summation of the internal forces at each
station again equals the external force.

With these corrected stresses acting in stringer B,
the adjustment of stringer B is started. Stringer A is
locked at the stresses obtained from the first process of
adjustment; stringer C is locked at the stresses initially
assumed. The detailed form of the computation is
shown in table 12 of part IIT and differs from that used
for single-stringer structures only in so far as necessary
to take into account the fact that there is a sheet and
a stringer on either side of the stringer being adjusted
instead of only one sheet and stringer on one side.

Columns 1, 2, and 3 of table 12 give the values of the
stringer stresses o4, o¢, and op. They are listed in
this sequence to separate the values of o4 and oo,
which remain constant during the adjustment of
stringer B, from the stresses o5 and the other quantities
that change during the adjustment.

Columns 4 to 7 give the computation of the shear
force in the panel between stringers A and B; all
propertics of this panel are denoted by the superseript
AB.

Columms 8 to 11 give the computation of the shear
force in the panel between the stringers B and C; all
properties of this panel are denoted by the superseript
BC.

Column 12 gives the differcnce between the shear
forces in the two panels for cach bay

D=ASy—AShy

Column 13 gives the force Fr=0,4,.

Jolumn 14 gives the increments AF,.
Column 15 gives the shear fault

SE=D—AFy

Columns 16 to 19 give the shear-fault correction
stress Aop in analogy with the columns 11 to 15 of the
single-stringer computation.

After several cycles—-say five cycles—the adjustment
of stringer B is stopped, and the stringer is locked at
the stresses thus obtained. The process of adjustment
has again upset the static equilibrium; that is, the ex-
ternal force at any cross section will not be exactly
balanced by the summation of the internal stringer
forces assumed to exist at this stage. Static equilib-
rium is restored as before by increasing the stresses in
the stringer that will be adjusted next, namely, stringer
C.

Stringer C is now unlocked and adjusted, and the
procedure of adjusting and restoring equilibrium is
continued until the center stringer is reached. The
entire process is then repeated several times until suc-
cessive values of all stringer stresses in the structure
are in sufficiently close agreement.

In the case of a cambered cover, it is necessary to
introduce the same modification as discussed for single-
stringer beams, based on the modified basic equation
(1e”). After column 4 of table 12 a column must be
added for [(o4—0p)~ (04" —0p")]; similarly, after column
8 a column must be added for [(o5— o) — (57— 0c7)].

ANALYSIS OF CUT-OUT EFFECTS

Principle and scope of method.—The most convenient
and the most rapid method of analyzing structures
with cut-outs is the indirect, or inverse, method. The
analysis by the indirect method is made in two steps.
First, the structure is analyzed for the basic condition
that exists before the cut-out is made. The results
of this basic analysis are used to calculate the internal
forces that exist along the boundary of the proposed
cut-out. External forces equal and opposite to these
internal forces are then introduced; these external
forces reduce the stresses to zero along the boundary
of the proposed cut-out, and consequently the cut-out
can now be made without disturbing the stresses.

- The external forces introduced to reduce the stresses
along the boundary of the cut-out to zero will be called
the “liquidating” forces, a term used by R. V. South-
well in a somewhat different meaning. In general, it
will be impossible to calculate accurately the stresses
that these liquidating forces set up at a distance from
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the cut-out. Some simplification of the problem is |
permissible because the liquidating forces form self-
equilibrated systems so that, by St. Venant’s principle,
their effects become negligible at some distance from
the cut-out. In order to obtain numerical answers,
however, it is necessary to make very stringent sim-
plifying assumptions, and the method can therefore
be applied only to reasonably small cut-outs.

The treatment given here is confined to structures
baving distinct stringers. For cases in which the
stringers and the skin are fused into a homogeneous
unit, it is preferable to use the standard methods of the
theory of elasticity; some solutions of the cut-out
problem for such cases may be found in publications on
the theory of clasticity.

Effects of removing a skin panel.—Figure17 (a) shows
the internal shear forces that exist along the edges of a
skin panel bounded by two stringers and two ribs.
The directions of the force arrows are the positive
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Fiaure 17.—Eflects of removing a skin panel.

directions in accordance with the general sign conven-
tions. In order to reduce the shear stresses along the
edges of the panel to zero, external or liquidating shear
forces are introduced as shown in figure 17 (b), which
are equal and opposite to the internal shear forces; only
the forces acting on the main structure are shown in
figure 17 (b) because the stresses in the skin panel itself
are of no interest.

In most practical cases, the stringer arcas and the
skin thicknesses just outboard of the cut-out are the
same as these just inboard of the cut-out. The
stress-distribution set up by the liquidating forces will
then be symmetrical about a chordwise line bisecting
the cut-out. Figure 17 (c) shows schematically the
stresses set up in the stringers with the signs appropriate
to the casc where the basic stresses are positive. The
figure indicates stresses only for the two stringers
bordering the cut-out; the stresses in the other stringers
are small enough (as will be shown experimenteally in
pt. III) to be neglected in view of the fact that the
changes in stress distribution caused by a small cut-out
are small compared with the basic stresses.

The assumption that the liquidating forces of figure

17 (h) set up stresses only in stringers C and D is
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equivalent to assuming that the skin panels BC and
DE are rendered inoperative by slotting them length-
wise. Under this assumption, the problem becomes
identical with the problem of the free pancl shown in
figure 18. The analytical solution for the free panel is
given in reference 1; for the present purpose it can be
simplificd by assuming that the structure is very long
on either side of the cut-out. The forces in the stringers
inboard and outboard of the cut-out are then given by
the formula

P=4 %»rntLe*K” (18a)
where 7, is the basic shear stress existing in the panel
before the cut-out is made, ¢ is the thickness of the
panel, L is the length of the cut-out panel, and K is the
shear-lag parameter defined by

oGt/ 1
K= Z;JHTD) (18b)
P m.wfp' \P
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FIGURE 18.-—Free panel.

The signs of the stringer stresses set up by the liqui-
dating forces P are indicated in figure 17 (¢) for the
case of a positive basic shear stress 7. The shear
stresses set up by the liquidating forces are given by

- 1 - Kz A

T~~~270KL€ E (18¢c)

and are of such a direction as to increase the basic shear

stresses.  Within the region of the cut-out, the stringer

forces vary linearly between the maximum values

obtained by setting =0 in formula (18a). The con-

vention for measuring z in formulas (18a) and (18¢)
is shown in figure 17 (a).

The shear stresses given by formula (18¢) arc prob-
ably conservative because some of the shear load is
taken by the adjoining panels, which are assumed to be
inoperative in this simplified theory: Conversely.
allowance must be made for increased shear stresses in
the adjoining panels. Considerations of continuity
indicate that, in the immediate vicinity of the corners
of the cut-out, the maximum shear stresses in the
adjoining panels BC and DE of figure 17 should be
taken as cqual to the maximum stresses given by
formula (18c).
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Effects of cutting stringers.—Iigure 19 (a) shows a
cut-out obtained by removing three skin panels and
cutting two stringers. The cffects of removing the
. skin panels can be calculated by the method described
in the preceding scction. The effects of cutting the
stringers are represented by the liquidating forcés P
shown in figure 19 (a). The liquidating forces cause
compressive stresses in the cut stringers and tensile
reactions in the uncut stringers if the basic stresses are
positive, that is, tensile. By analogy with the preced-
ing case of the skin pancl, it may be assumed that the
tensile reaction to the liquidating forces is entirely
furnished by the two stringers bordering the cut-out;
the stress system shown in figure 19 (b) is based on this
assumption, and the numerical solution is obtained by
considering one cut stringer and the adjacent con-
tinuous stringer to work together as a free panel.

Root 4
B C 0 E F G H

IS DR SN S N A

Tio ¥ (a)

Freurnp

The solution for the free panel (fig. 18) of infinite
length is

1)1:P221)3~Kx (19&)
01:P1/Al 02:1)2/A2 (19b)
~{PKe (190)
with K defined by
Ko Edlﬁ ) (19d)

If symmetry about a longitudinal line through the center
of the cut-out is assumed, the numerical solution for the
cut-out is obtained in the first approximation by
setting in formulas (19b) and (19d)
AIZAE:AF A2:AD:AG

477389—43-——3

d=b (20)

BOX BEAMS

where b denotes temporarily the effective half-width of
the cut-out. The tests to be described in part IIT
indicate, however, that, even when only one stringer is
cut, it is justifiable to assume that several of the con-
tinuous stringers participate in furnishing the reaction
to the liquidating forces. The simplest assumption that

can be made about tho participation of other sumgom
is expressed by setting

Ay=Ag+ Aye "+ e - L (21)

when formulas (19) are used.  The stresses caused by

the liquidating forces are then
G0 —7[ 2/A
—d/b (22)

=2d /b

T =036

T;=—0:€

O S S

{®)

19.-—Eflects of cutting stringers.

When only one stringer is interrupted, half of it is con-
sidered as constituting A;.  When » stringers are inter-
rupted, the n/2 stringers on cach side of the cut-out are
considered to constitute A;, and they are assumed to be
concentrated at their common centroid to determine b.

It is apparent that the use of formula (20) will be
conservative for stringers D and G and the skin panels
between them but somewhat unconservative for
stringers and pancls distant from the cut-out.

At present, insufficient theoretical or experimental
knowledge is available to define the limits within which
the method presented here may be safely used. Tt
would seem advisable to consider this method as giving
only a first approximation when more than three
stringers are interrupted by the cut-out. The method
of shear-fault reduction must be resorted to in such
cases to improve the accuracy of the results.
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II. EXPERIMENTAL VERIFICATION OF THE
THEORY OF SHEAR LAG

TEST OBJECTS AND TEST PROCEDURE

New NACA tests.—Previous experimental investiga-
tions on shear lag have been generally confined to panels
and beams of constant cross section; it was therefore
considered desirable to obtain experimental verification
on a beam with a variable cross section. Although the
cross section can be varied in a number of ways, it was
deemed most important and instructive to verify the
influence of tapering the cross-sectional arca of the
stringers. '

A skin-stringer panel was therefore built as shown in
figure 20 and tested in three different set-ups. A photo-
graph of the second set-up is shown in figure 21. In
order to obtain a sensitive check on the theory, the panel
was designed for large shear-lag effects by using a large
ratio of stringer area to sheet area.

The tension panel was then converted into a beam by
adding shear webs; a cross section of the beam is shown
in figure 22, and figure 23 shows the inside of the beam
with strain gages set up at one station. This beam is
designated beam 1. Beam 1 was also tested with two
small cut-outs and two large cut-outs located symmet-
rically to the longitudinal axis. Figure 24 shows a
strain-gage set-up on the beam with the large cut-outs.

After the cut-out tests were completed, the beam was
cut off just outhoard of the first bulkhead, producing a
very short wide beam, designated beam 2. The test
set-up for this short beam is shown in figure 25.

FIGURE 21.—Test set-up for panel,

2203
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It was also considered desirable to verify the validity
of the theory in the limiting case of a beam without
stiffeners. The dimensions of a beam built for this pur-
pose, designated beam 3, are given in figure 26, and the
test set-up 1s shown in figure 27. In order to obtain a
sensitive check on the theory, the beam was made
quite short.

As indicated in figure 26, beam 3 was tested in two
conditions: first without corner flanges (original cross
section) and then with corner flanges consisting of flat
strips riveted to the cover as close to the corner as pos-
sible (modified cross section).

The beam was built and loaded symmetrically about
a transverse plane; it was thus possible to realize the
condition of a built-in end and at the same time to
measure strains directly at the root section.

]

__ﬁf'__
|
|

062 —
6/2
S22 Ix/x 3
L e JLJ
== ==
T 3 x 2 STrip from roof fo midpoint

F1GURE 22.—Cross section of beam 1. Cover of beam is panel shown in figure 20,

FI1GURE 23.--"Fest set-up for beam 1. -

S % A RN SORINRA 2 A0
FIGURE 24.—Test set-up for beam 1 with cut-outs.

FIGURE 25.-Pest set-up for beam 2.
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(a) Side view.
(b) Original cross section.
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FIGURE 26.—Beam 3. Sheet 245-T, K=10.6X10%; stringers 245-T, FE==10.3108,
Bulkheads not shown on cross sections.

FIGURE 2 Iest set-up for heam 3.
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R Fiaure 28.—Sketch of test beam from reference 5.
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Igure 29.—Diagram of loading cases for panel.

All strain readings were taken with 2-inch Tuckerman
gages. These gages were always used in pairs on op-
posite sides of the sheet or the stringer to eliminate as
far as possible the effects of local bending.  Temperature
variations during the tests were confined to 1°F,
limiting the error in stresses to about 50 pounds per
square inch. '

The load was applied in four equal steps in all of the-

cases except one, in which case three steps were used
(beam 1, case 4). The stress readings plotted corre-
spond to the highest test load used but were obtained
by drawing the best-fitting straight lines through the
load-strain plots and correcting for zero shift when nec-
essary. The friction of the loading apparatus was
measured several times during the tests and was found
to be 2 percent, unless otherwise noted on the spanwise
stress plots. Corrections have been applied for friction.

Young’s moduli for the stringers were determined
from several specimens cut from the beams after the
tests had been completed. For the sheet used to man-
ufacture beam 3, the modulus was determined from
several test coupons cut from the same sheet from which
the beam was fabricated. The moduli obtained are
noted on the drawings of the specimens.

In all these tests the buckling stress of the sheet was
never exceeded enough to cause an appreciable reduc-
tion in the average shear modulus. In many tests
there was no visible buckling at all.

0ld tests reanalyzed.—Bceause the methods of anal-
ysis proposed .in this paper are relatively new, it seems
desirable to buttress them with as many experimental
verifications as possible. An effort was therefore made
to secure all available test results and to analyze them
by the proposed methods. It was found, however, that
many published tests were of doubtful value for fur-
nishing quantitative checks because very thin sheet that
buckled at low loads had been used in these tests; the
effective shear modulus could not, therefore, be calcu-
lated with sufficient accuracy for a quantitative check.
The tests considered usable were a test on a compression
panel made by White and Antz (reference 4) and two

P=1200 pounds.

beam tests reported in reference 5. The beam tested
in reference 5 is shown schematically in figure 28.

TEST RESULTS AND COMPARISONS WITH THEORY

Methods of analysis used.—All calculations were
made by analyzing the substitute single-stringer strue-
ture by means of the recurrence formula. The stresses
in the stringers were computed by using the method of
chordwise distribution ‘as described in part I of this
paper, including the correction for a finite number of
stringers. Unless otherwise noted the calculated re-
sults shown as curves in the figures are those obtained
with the second approximation for the substitute width.

Part T docs not give explicit rules for determining the
width b; of the idealized sheet between stringers when
the stringers are arranged as in beam 1. The sheet was
assumed to be clamped between the opposing stringers
with an cffectiveness of 50 percent; in other words, the
calculations were made as though the stringers were
attached by two rows of rivets separated by half the
width of the stringers.

‘New NACA tests.—The panel was tested under three
conditions, as schematically indicated in figure 29.
Figures 30 to 32 show the experimental and the calcu-
lated results in the form of spanwise plots of stress.
Figures 33 and 34 show the corresponding chordwise
plots for the first two cases.

The agreecment between experiment and theory is
very satisfactory except near the root in cases 1 and 2.
The experimental points in this region scatter badly
about a mean line (figs. 33 and 34). Integration of the
measured stresses over the cross section gives internal
forces that agree within about 5 percent with the exter-
nal load, indicating that the strain measurements are
fairly accurate but that there was some irregular be-
havior of the structure. It was thought that this ir-
regularity might be caused by play in the bolt holes at
the root; several holes were therefore carefully reamed
out for the next larger size of bolts before making the
beam tests, and the chordwise plots of stresses for the
beams were much more regular.
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Beam 1 was tested under the four loading conditions
shown in figure 35. The spanwise stress plots are
shown in figures 36 to 39. The agreement between
tests and theory is very satisfactory for the most highly
stressed  stringers near the flange and for the flanges
themselves, except for the fact that the experimental
stress in the flange at the station nearest the root is
slightly high in cases 1 and 4. In the stringers ncar
the center line, the experimental stresses arc higher than
the calculated stresses near the root in cases 1, 3, and 4.
It is believed that the discrepancy can probably be
charged to the assumption that the sheet was 100 per-
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Figure 41 shows the results of test 1 on beam 3.
Because the beam is symmetrical about the longi-
tudinal axis as well as the transverse axis, there are four
stress values for each station. It will be noted that in
most cases the four values agree very closely, which
indicates that the beam showed excellent symmetry of
strain about both axes.

This test is a rather crucial test on the range of
validity of the theory. It has been held by some
investigators that the theory of shear lag as developed
in this paper would not apply to the limiting case where
the clements of the cover carrying shear (the sheet
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FIGURE 32.—S8tresses in panel, case 3.

cent effective in contributing to the stiftener arca.
There are fairly consistent indications from a number of
tests that this assumption is too optimistic when the.
ratio ozfoy is large. A similar observation was madein
reference 6. This remark applies both to the compres-
sion side when the stresses are below the buckling
stresses for the sheet and to the tension side. On the
compression side, the well-known effective width of the
sheet must be used when the sheet has buckled.

The results on beam 2 are shown in figure 40. In view
of the fact that this beam has an extremely small ratio
of length to width as well as a small shear-lag parameter
K, the agreement is excellent.

panels) and the elements carrying normal stresses (the
stringers) are merged into a single unit, namely, a sheet.
Figure 41 shows that this opinion is too pessimistic; the
agreement is not perfect, but the maximum flange
stresses, which are of paramount interest for design,
are predicted fairly well.

The main difficulty in applying the theory to the case
just discussed lies in the fact that A becomes very
small compared with Ay; the flange area consists only
of the area J§ hf, which expresses the participation of
the shear web in the bending action. For small ratios
of Az to A;, the shear-lag parameter K becomes very
large and sensitive to errors in Ap. The difficulty is
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Fieure 34.—Chordwise distribution of stresses in pancl, case 2.

obviated when a corner flange of rcasonable area is
provided; in built-up structures, such a corner flange is
usually provided in the form of an angle for riveting
the cover to the shear web. In beam 3, a corner flange
was provided by riveting flat strips along the edges, as
shown on the second cross section in figure 26. The
test results for this condition are plotted in figure 42
and show excellent agreement with the theory.

0ld tests.—Iigure 43 shows the experimental and
the calculated results for the compression panel de-
scribed in reference 4.

Figure 44 shows the results of the test on the beam
described in reference 5 for a load applied at the tip.
Figure 45 shows the test results for the same beam under
loads distributed as indicated in figure 28, The agree-
ment is fairly satisfactory.

Cut-out tests.—The approximate method of analyz-
ing cut-outs described in this paper is based on the
assumption that a pair of equal and opposite forces
applied to adjacent stringers does not affect other
stringers very much. A special test was made on
beam 1 to verify directly the validity of this assump-
tion. Two equal and opposite forces of P=1162 pounds
were applied to.bolts at the intersections of the rib at

midspan with stringers D and E. Figure 46 shows
the experimental stresses and the stresses calculated
under the assumption that only stringers D and E are
stressed. ‘
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FiGURE 35.—Diagram of loading cases for beam 1. P=600 pounds on each shear

web for cases 1, 2, and 3; P==225 pounds on each shear web for case 4.
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Figure 47 shows the results of the test on beam |
with small cut-outs located as shown by the sketch;
only the skin was cut out in this case.

Figure 48 shows the results of the test on beam I

with large cut-outs located as shown by the sketch and
in figure 24. The agreement between theory and
experiments for the cut-out tests is very satisfactory
except for the discrepancies already noted in the
tests on the same beam without cut-outs.
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III. NUMERICAL EXAMPLES
IDEALIZATION OF CROSS SECTIONS

Problem 1.—To find the idealized cross section of a
beam with open-section stiffeners: ;

The actual cross section of the beam is shown in
ficure 49 (a). The effective width of the sheet for
normal stresses is to be taken as w=20t.

The idealized width d for shear deformation (fig. 11)
is equal to the width between rivet rows, that is, 4
inches.

The area of the idealized flange is obtained by adding
the following areas: .

Square inch
Cornerangle.._......... . ____ 0. 300
Skin from corner to rivet line (0.375%0.040).. . 015

Iiquivalent of web (4X6.00<0.065)_.__._.. .065
Area of idealized fange. .o .. _.. 0.380

The first stringer immediately adjacent to the flange
consists of only the effective width of skin; the are:

. H v
is

20<0. 040 0. 040:==0. 032 square inch

Each of the next two stringers consists of a stiffener
and a double strip of skin; the area of each idealized
stringer is therefore

A=0.2004-2>20<0. 040 X 0. 040==0. 264 square inch

The stringer at the center line has one-half this area,
or 0. 132 square inch.

The total area of the longitudinals is
Ap=20.0324+0.2644-0.26440.132==0.692 square inch

The idealized cross section is shown in figuve 49 (b).

Problem 2.—To find the idealized eross section of a
heam with closed-section stiffeners:

The actual cross section of the beam is shown in
figure 49 (¢). The effective width of the sheet is to be
taken as w=20¢t.

The effective width b, for shear deformation is, by
formula (13),

1.50
0.080 % 1.50
0.040<3.00

[ — ==(.75 inch.

14+
The idealized width from the flange to the first stringer is
therefore

(l:’%.25+%><0.75:3.63 inches

and the idealized width of the second and third panel is
d=2.50+0.75=13.25 inches

The arcas of the flange A, and of the first small stringer
are the same as in problem 1.

The area of the second as well as of the third idealized
stringer is obtained by adding the following areas:

Square inch

Hatseetion_ ... _______ .. 0. 260
Skin between rivets (1.5X0.040)_. _ e~ . 060
Two strips of skin (2X 20X 0.040X0.040) . 064
Arca of idealized stringer. - __ . ________ . _. __ 0. 384

The stringer at the center line has one-half this area, or
0.192 square inch.
The total area of the longitudinals is

AL=0.03240.384-0.38440.192=0.992 square inch

The idealized cross section is shown in figure 49 (d).
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ANALYSIS OF A MULTISTRINGER BEAM, OBTAINED BY
THE USE OF THE SUBSTITUTE SINGLE-STRINGER
METHOD AND THE RECURRENCE FORMULA

Given data.—Iigure 50 shows the idealized form of a
beam; the problem is to find the stresses in this beam
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F1GURE 41.—Comparisons between calculated and experimental stresses in beam 3,
case 1. TFriction less than 4 percent.

under the load indicated by the use of the substitute
single-stringer method and the recurrence formula.

This idealized beam is very nearly identical with the
idealized form of beam 1 discussed in part II. The
following simplifications have been made: The slightly

tapering effective width of beam 1 has been replaced
by a constant width; the slightly tapering effective
depth, with a discontinuity at the midspan, has been
replaced by a constant depth; the load has been located
exactly at the tip instead of at the actual location of
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FiGuRrE 42.—Comparisons between calculated and experimental stresses in beam 3,
case 2. Friction less than 34 percent. Third approximation.

0.56 inch from the tip. None of these deviations

amounts to more than 2 percent at any point; the results

obtained in these numerical examples can therefore be

compared quite closely with the corresponding cal-

culated curves shown in part IT.
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From the data given in figure 50, table 1 has been
prepared to give the data in the fOIm required for the
analysis, -

First approximation to the substitute single-stringer
structures.—The first approximation to the substitute
single-stringer structure is obtained by combining the

5.0

40— 1~ -

1.0F=

Rotio of stringer stress to mean stress

e A T S N

o .2 4 .6 .8 o

Distance from root

FIGURE 43.--Comparisons between caleulated and experimental stresses in p(mel of
reference 4.

stringers constituting 4, into a single stringer located

at the centroid of A4,. As indicated in figure 50, this

centroid is located 6.28 inches from the Jlanoo, and

this distance is by definition the substitute width in

the first approximation.

The computation of the cocfficients required for the
analysis of the substitute beam is shown in table 2.
The values of Ay and Ay are the same as for the actual
structure and are obtained from table 1. The shear-lag
parameter K is calculated from formula (4). The
substitute width bs just found is used where b appears
in this formula, so that

Gt _0.40X0.015

b, 6.28

- — 56
b 0.000956

The coefficients p, g, and v are caleulated by formulas
(3a), (3b), and (3¢); because @ and { arc constant in
this particular beam, the common factor Gt has been
omitted from all coefficients.
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With the cocfficients computed in table 2, the system
of cquations for the X-forces (first appm\lmatlon) is
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(a) Stress in flange.
(b) Stress in center stringer.

FleuRrE 45.-~Comparisons between calculated and experiméntal stresses in beam of
reference 5 for distributed load.

written in conformance with equations (5). The
boundary conditions are X,=0 and v,4,;=0.
— X;(0.1400+0.1388) + X,(0.1182) = — 66.7 -+ 66.5

X1(0.1182) — X,(0.1388+0.1376) + X;3(0.1190) = — 66.5+ 66.3
X,(0.1190) — X;3(0.1376+0.1362) + X,(0.1191) = — 66.3 + 66.1
X3(0.1191) — X,(0.1362+0.1358) + X5(0.1200) = — 66.1 -+ 66.0
X,(0.1200) — X5(0.1358+0.1347) 4 X(0.1201) = — 66.0-+ 66.0
X5(0.1201) — X4(0.1347) = —66.0
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These equations are then solved, and table 3 gives the
“final computation of the stresses in the substitute beam
as obtained from formulas (9a) and (9b).

Second approximation to the substitute single-
stringer structure.—The calculation of the second
approximation begins with the last two columns of
table 3. The parameter Yb is obtained from figure 13
for each station, and the average value of Y is com-
puted. From figure 15, the value of 1—(y./b) corre-
sponding to this average value of Yb is read, and the
second approximation to the substitute width is ob-
tained by formula (17a).  Actually it is not necessary to
compute the sccond approximation of bg; it is possible
to proceed directly to the new valucs of the shear-lag
parameter K by dividing the values of K given in table 2

IN BOX BEAMS
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the ratio o7/o7=0.535, and the corresponding value of
Yb=1.760 from figure 13. This value of ¥b is entered
in table 6, and the values of Yy for the two intermediate
stringers B and C are calculated by proportion and
entered in column 2. Next, the hyperbolic cosines are
entered in column 3. The stress in the center stringer
D is now calculated by formula (16)

4

5000

mzm:wm pounds per square inch

and entered in column 4. The stresses in the stringers
B and C are then calculated by formula (14) and entered
in column 4.

Column 5 gives the cross-sectional areas of the string-
ers Ay, and column 6 gives the internal forces oA,
The sum of these forces will not equal the force o4, on

6 Stations
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Frgere 50 Beam used for numerical examples.

new values of K and thic computation of the new set of
coefficients p and ¢ for the recurrence formula. Table 5
gives the values of the X-forces and the final stresses
in the beam for the second approximation. As a check,
the average value of Yb is again computed, and the
corresponding value of 1—(y./b) is found. The factor
Ve[1—(y./b)] differs by only 1 percent from the factor
obtained in the first approximation; the sececond
approximation may therefore be considered the final
approximation.

Calculation of chordwise distribution of stresses.—
After the final approximation to the stresses in the
substitute beam has been computed, the chordwise
distribution of the stresses in the actual beam can be
found. As an example, the calculation will be shown
in detail for station 5.

According to table 5, o»=>5000 pounds per square
inch and ¢,=2673 pounds per square inch for station 5;

account of the finite number of stringers, and a correc-
tion must be applied to all of the stresses ¢ except to
the stress in stringer A; the stress in stringer A must
necessarily remain equal to op.

The correction is made as follows: The force F, is
0. A;,=2673X0.771=2060 pounds. The force in stringer
A is 140 pounds, as shown in column 6; the total
force that must be supplicd by the center stringer D
and the two intermediate stringers B and C is therefore
2060—140=1920 pounds. The summation of the inter-
nal forces in the three stringers B, C, and D as given in
column 6 is only 1715 pounds; the stresses ¢ given in
column 4 must therefore be multiplied by the factor
1920/1715=1.120 to obtain the final values of the
stresses o, which are listed in column 7. As a check,
the internal forces are again computed with the cor-
rected values of o; the summation checks exactly with
the force F,=2060 pounds.
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The calculation of the chordwise distribution of
stresses is made In the same manner for each station;
the results of the calculations are given in table 7.

ANALYSIS OF MULTISTRINGER BEAM WITH CUT-OUT

Tt will be assumed for the example of a multistringer
beam with cut-out that a cut-out is made in the beam
shown in figure 50 and analyzed in the preceding ex-
ample; the skin panels AB and BC and the stringer B
are removed between stations 3 and 4%, corresponding
to the large cut-out in beam 1 described in part LI
The effects of making this cut-out are to be found.

Effects of removing skin panel AB.—The total shear
force in the skin panel AB between stations 3 and 4%
is found by statics with the stresses given in table 7;
it is equal to the sum of the forces in stringers B, C, and
D at station 4% minus the sum of the forces in the same
stringers at station 3. The result of the simple caleu-
lation is 7i¢L=484 pounds. The next step is the caleu-
lation of the parameter K by formula (18b). In this
case, the cut panel is bounded by stringers A and B;
the arecas A¢ and A, of formula (18b) are therefore
replaced by A, and Ag.  In order to be consistent with
the assumption that the structure is the same at the
two ends of the cut-out, the values of A, and Ay used
will be those valid for the middle of the cut-out. Form-
ula (18b) gives therefore

0.40X0.015/ 1 1
2 /1J . ,
K=""5 525 (0.355 0.271)*0‘0“’78
K=0.1038

After these preliminary calculations, the solution can
be carried out in tabular form as shown in table 8. The
value of P at stations 3 and 4% is %rtL=242 pounds;
at the other stations P=242¢~%* pounds according to
formula (18a). The calculation of ‘the stresses P/A,
and P/Ajp is self-explanatory.

Effects of removing skin panel BC.—For panel BC,
the shear force is found by subtracting the internal
forces in stringers C and D at station 3 from the forces
at station 4%; the result is

Tt L=195 pounds

The value of K is found from

0.400.015/ 1 1

g " 15 ‘ B

Kr="3%55 o271 F0.271)*0-0122
K=0.1104

Table 8 shows the details of computing the stresses
PJAg and P/A¢ caused by removing the skin panel BC.
The last four rows of the table give the stringer stresses
in the beam, obtained by superposing on the stresses of
table 7 the stresses caused by removing the two skin
panels AB and BC. The signs of the stresses are detes-
mined by comparison with figure 17 (c); at station 3,
for instance,

op=2370-}-945-—-381=2934 pounds per square inch

ADVISORY COMMITTEE FOR AERONAUTICS

where 945 pounds per square inch is the stress caused
by removing panel AB, and 381 pounds per square inch
is the stress caused by removing panel BC.

Effect of cutting stringer.—According to the stresses
listed in table 8, the stress in stringer B at station 3 is
0p=2934 pounds per square inch. The internal force at
the outboard end of the cut-out is therefore 2934
0.256="752 pounds. At the inboard end of the cut-out,
the force is 2614X0.287=750 pounds. The region
around the cut-out is now divided into four free panels
so that formulas (19) can be used. Two of these panels
are inboard of the cut-out; for the first panel

A=r Ay and A=A,
for the second panel
A=t Ay and A= Aot 4,

by formula (21), all areas being those at station 4.
Tor simplicity, it will be assumed that the two panels
have the same shear-lag parameter K, and K will be
computed by using the average of the two given values
of As. The result is

,.0.400.015
2 Tt N
Ke=""5 595

K=0.127

1 1
(m+m>=o.0161g

for the inboard panels.

The other two free panels are outboard of the cut-out
and arve defined in the same manner; the calculations are
made with the areas at station 3. The shear-lag param-
cter is given by

0.40%0.015/ 1 1 ,
2 —
K'=="3"%25 \0.318+0.128>“0'01813
K=—0.1347

The calculation itself is given in table 9. The stresses
caused by cutting stringer B shown in this table are
superposed on the final stresses shown in table 8 to
obtain the final stresses in the stringers.  The stresses
in stringer D caused by cutting stringer B arc obtained
by formula (22) as e™! P’/ 4,.

When the results of this computation are compared
with the curves in figure 48, it should be borne in mind
that an additional small correction must he made for the
actual test because removal of the skin panels reduces
the arcas A, and Ajp in the region of the cut-out.

ANALYSIS BY SUCCESSIVE SHEAR-FAULT REDUCTION

Analysis of single-stringer beam.~—The method cf
analyzing a single-stringer heam by successive shear-
fault reduction will be demonstrated on the substitute
single-stringer beam analyzed previously by the recur-
rence formula. The basic data for the beam are those
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given in table 1; for the substitute width, the second
approximation be=6.28X1.090=6.85 inches was used.
. As the initial assumption, the stresses in the flange were
arbitrarily assumed to be 1.40 times the stresses given
by the Me/I formula. Table 10 gives the first cycle of
the computation; a comment on the form of the com-
putations is given in part I of this paper. Table 11
gives the second cycle of the computation, starting with
the values of o found at the end of the first cycle.
As a general check on the computations, the sum of the
shear faults is shown for both cycles; it will be noted
that it has decreased from 843 to 764 pounds.

Analysis of multistringer beam.—As an example for
the analysis of a multistringer beam, the beam of
figure 50 is again used, and a typical cycle of adjust-
ment for stringer B is shown in table 12. Because the
example is illustrative, the stress values oy, oy, and o¢
were not assumed arbitrarily but were taken from table
7, the final result of the previous analysis. The shear
faults are therefore very small, and the adjusted stresses
op are practically identical with the initial stresses.
The small differences that cxist arise from two reasons.
The first reason is the limited numerical accuracy of
the process. This numerical accuracy is determined by
the number of bays used and the accuracy of multipli-
cation and division. -These operations were carried
out with a 10-inch slide rule in all numerical examples
given in this report. The sccond reason for the failure

of table 12 to show exact agreement between the initial
and the final values of oy lies in the slight differences
between the basicassumptions. Therecurrence formula
is based on the assumption that the cross section is
constant in cach bay, but the stresses vary nonlinearly
in each bay. The shear-fault reduction method, on the
other hand, assumes that all stresses vary linearly ins
cach bay. '
CONCLUSION

The theory of shear-lag action presented in this
paper is based on the concept of idealized structures
consisting of stringers carrying longitudinal stresses,
of sheet carrying shear stresses, and of transverse ribs
infinitely closely spaced and of infinite stiffness. The
test results indicate that this theory is acceptable as a
basis for practical stress analysis because, in general,
the differences between test results and calculated re-
sults in the critical regions are smaller than occasional
scatter of test results caused by uncontrollable ir-
regularities in the behavior of the structure.

LANGLEY MEMORIAL ABRONAUTICAL LLABORATORY,
NationaL Apvisory CommiTrEE For AERONATTICS,
LancLey Fienp, Va., March 7, 1941.



APPENDIX A

SYMBOLS
cross-sectional area, sq in. v direct (normal) stress, Ib/sq in.
Young’s modulus, 1b/sq in. T shear stress, Ib/sq in.
internal force, b 70 basic shear stress existing before a cut-out is

effective shear modulus, lb/sq in.
geometric moment of inertia, in.*
static moment of area about centroidal axis, in.?

. shear-lag parameter (equation (4))

length, in.

bending moment, in.-l1b

external load, 1b

shear force, lb

shear fault (equation (SS-3))

shear-fault correction (equation (SS-4))

auxiliary parameter (equation (14))

half-width of structure, in.; with numerical
subscripts,  distance between  stringers
(fg. 12), in.

developed width, in.

depth of beam, in.

thickness, in.

effective width

distance parallel to center line

distance from center line

shear strain
32

made, lb/sq in.
Superscripts have the following significance:
P theoretical values based on the assumption that
plane cross sections remain plane
Subscripts have the following significance:
C cover sheet
E external (applied)
F7 .

flange
longitudinal
S substitute
st stringer
T total
4 shear web
CE occurring in the cover sheet and obtained by
the elastic relation
CL center line
7 inboard
0 outboard
av average
e effective



APPENDIX B

COMPARISON BETWEEN DIFFERENT SOLUTIONS OF THE SHEAR-LAG PROBLEM B

The basic shear-lag problem is the problem of a box
beam with constant cross section. In 1930 Younger
published a solution of this problem (reference 7). In
1937 there was published a slightly different solution,
the constant-stress solution (reference 1). In 1938
Reissner published a third solution (reference 8). If the
flange efficiency » of a box beam is defined by the ratio
of the Mec/I stress to the actual flange stress, all three
solutions can be reduced to the same form, namely,

tanh F
=

where F'is a function of the geometrical and the physi-
cal properties of the box. This function F is defined
“as follows:

b I

1 b ror. roforence
= 1.071L 0 (Younger, reference 7)

14142 |E
F_1A414L\/ﬁ

17300 [E
F==1.732 L\/@

1t will be seen that the three solutions are identical in
form and differ only slightly in the numerical constant.
-~ All three solutions involve some simplifying assump-
tions, and any one of the three could be used equally well
as a basis for building up approximate solutions for
beams of variable cross section. All three solutions,
however, lead to the result that the flange efficiency is
constant along the span. A glance at figures 41 and 42
indicates that this result cannot be more than a rough
approximation; the flange stresses on these figures are
not straight lines. For this reason, the treatment of
the beam with variable cross section as presented in
this paper was not based on any of these solutions.

Of the three basic solutions given, only Reissner’s
solution is of such a nature that the underlying assump-
tions can be physically realized without difficulty (con-
stant cross section, concentrated load at tip). At the
time of publication, it was stated that the solution is
applicable only when the cover consists of corrugated
sheet (reference 8); it was stated later (reference 9)
that the solution applies also when the cover consists
of a flat sheet. Reissner’s solution is therefore shown
in figure 41; it will be seen that, at some distance from
the root, it is a fair approximation, but at the root the
experimental shear-lag effect is nearly twice as large
as that predicted by Reissner’s solution.

(Kuhn, reference 1)

(Reissner, reference 8)

The series solution given by Winny (reference 10)
is based on the same principles as the solutions listed
and is therefore open to the same objection in that it
cannot give more than a very rough approximation.
In view of this fact, the labor of using a solution by
series is hardly justifiable.

The solution given by Goodey (reference 11) is
identical with the solution of the single-stringer beam
given in reference 1. Goodey also gives one case not
included in reference 1, namely, the case of uniformly
distributed loading.

A very complete and elaborate method of shear-lag
analysis has been presented by Ebner and Koller
(reference 12). The idealized structure consists of
stringers, sheet, and transverse ribs. The transverse
ribs are finite in number and of finite stiffness; the
method is therefore more complete than the methods
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FIGURE 51.—Beam used by Ebner-Koller for numerical example (from reference 12).
G/E=0.385. Dimensions are in centimeter units.

presented in this paper. Comparative calculations
made in reference 12, however, show that the rib
stiffness has only a small influence on the stringer
stresses so that the simplifying assumption of infinite
number and stiffness of the ribs results only in very
small errors. This conclusion drawn by Ebner and
Koller from their theory is amply confirmed by the
good agreement between the experiments and the
analyses presented in this paper.

The method of reference 12 is rather difficult to
follow; comparisons have therefore been confined to
the analysis of numerical examples given therein by
the methods presented in this paper. The dimensions
of the structure analyzed in reference 12 are given in
figure 51.
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FIGURE 52.—Ebner-Koller beam, load case 1, analyzed by different methods.

Figure 52 shows the results for load case 1, which is
the case of an axially loaded panel. It will be noted
that in reference 12 there is given an “exact’” method
as well as an approximate one, the approximate method
being recommended for practice because the exact
method is quite cumbersome. The solution made by
the substitute single-stringer method agrees with the
exact method of reference 12 at all of the stations
except one within the accuracy of reading the values
from a small graph. The maximum difference between
the exact method and the present single-stringer method
is only slightly larger than the difference between the
two methods of reference 12 and is unimportant for
design purposes.
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FIGURE 53.—Ebner-Koller beam, load case 2, analyzed by different methods.
kilograms on each shear web.

V=50

Figure 53 shows the results for the beam. The agree-
ment between the solution of reference 12 and the single-
stringer solution of this paper is very close except at the
root, where there is a difference of 3 percent on the
flange stress and a difference of 20 percent on the stress
in the center stringer. The agreement between the
solution of reference 12 and the solution by successive
shear-fault reduction is good.

It should be pointed out that this numerical example
represents the most severe test that can possibly be made
of the powers of the substitute single-stringer method.
The chordwise distribution method, which is an integral
part of this method, is based on the assumption that
there are infinitely many stringers; the half structure
analyzed here has only two stringers, which is not a very
close approximation to infinitely many stringers.

The example may serve as a warning, therefore, that
in such extreme cases, the method of shear-fault reduc-
tion should be used to refine the approximation obtained
by the single-stringer method. From practical con-
siderations, the discrepancy found here between the
method of reference 12 and the substitute single-
stringer method is of little interest hecause structures
with only two stringers are not likely to be encountered
in practice.
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TABLE 7
CHORDWISE DISTRIBUTION OF STRESSES IN BEAM

TABLE 9
EFFECT OF CUTTING STRINGER
FINAL STRINGER STRESSIES

Station 74 on e oD
(Ib/sq in.) | (Ibfsq in.) | (Ib/sq in.) | (Ib/sq in.)
1 1112 952 840 800
2 2079 1774 1518 1440
3 2998 2370 1936 1790
4 3941 2875 2200 1985
5 5000 3320 2203 1873
6 6355 3399 2020 1630
TABLE 8
EFFECT OF REMOVING SKIN PANELS
Station f 5 415 3 2 1
T 12 4 4] 0 8 16
Lffect of removing pancl AB
Kr 1247 0.415 0 0 0.830 1,660
¢c-Kz . 287 . 647 1,000 1,000 . 436 . 190
P (1b) 69. 5 156. 7 242.0 242.0 105. 6 46.0
A4 (sqin.) . 422 . 392 377 . 334 . 305 . 276
PlA 4 165 400 642 726 346 167
Apg (sqin.) . 318 297 . 286 . 256 . 235 215
PjAp 219 527 847 945 450 214
Effect of removing panel BC
Kr 1.325 0. 442 ] ] 0, 883 1,766
¢ K= . 266 643 1.00 1.00 414 170
P (Ib) 25.9 62,7 97.5 97.5 40. 4 16. 6
PlAy 81 211 341 381 172 77
Plde 81 211 341 381 172 77
Stringer stresses after removing pancls AB and BC
a4 (lb/sq
in.) 6515 5400 5092 2275 1744 1193
o (lb/sq
in.) 3262 2984 2614 2034 2048 1097
ae(ib/sq
in, 1949 1989 1899 2331 1672 927
an(lb/sq
in.) . 1650 1870 1970 . 1800 1430 820

Station 6 5 414 3 2 i
x 12 4 0 0 8 16
Toileet of cutting stringer B
K 0.1270 0.1270 0. 1270 0.1347 0. 1347 0. 1347
Kz 1.525 . 508 0- 0 1.077 2.155
¢ Kz . 217 . 601 1. 000 1. 000 . 340 118
P (1b) 81 226 375 376 128 44
PlAa 193 576 995 1127 420 158
PjA, 512 1522 2614 2034 1090 406
Pz 218 642 1107 1240 460 171
e1PA2 80 236 407 456 169 63
TFinal stvinger stresses

a4 (Ib/sq

in. 6708 5976 6087 3402 2164 1351
an (Ib/sq

in.} 2750 1462 0 0 958 691
ac (Ibfsq

in.) 2167 2631 3006 3571 2132 1098
ap (Ib/sq

in.) 1730 2106 2377 2256 1599 883
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TABLE 10
ANALYSIS OF SINGLE-STRINGER BEAM BY SUCCESSIVE SHEAR-FAULT REDUCTION—FIRST CYCLE
GAv_040X8 _ .
6 0-467; 1AT=0.015X8=0.120 5 m.]
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17
a
Tp Fr i 7, OF—0L At T ASer AT SK SFC, | SFC; SIre Aok Aoy oF L,
Bay | Station | g,/ (bjsa | (bjsa | Gbjsq | Abfsq (bjsq | (bjsq | (bjsa | tbjsa
bt} oy | an) in) | iy | iy | iny | @0 {b) (o) by | by | by | ) | oin) | iny
0 0 0 0 0
1 3663 440 435 +5 | | [
1 1338 | 342 | 435 | 783 | 655 | 260 | | =6 | -3 | —9 | -5 | +16 | 1303 | 799
2 . [ 3404 | a08 | 430 | -22 | | | |
2 2435 | 689 | 865 | 1420 | l015 | 474 | | | ~19 | 46 | -3 | -6 | 421 | 280 | 140
3 | 2030 | 552 | 26 | -7 | | |
3 3350 | 1040 | 1291 | 1950 | 1400 | 654 \ | | -38 | +19 | 19 | —61 | 420 | 3280 | 1970
4 2216 | 273 | 42 | —152
4 | 4130 | 1302 | 1716 | 2400 | 1730 | 807 62 | a8 | —24 | 71 | 434 | 4080 | 2366
e \ 1469 | 176 424 —48
5 4790 | 1745 | 2140 | 280 | 2000 | 93 —88 | +62 | —26 | -7 | 34 | 4719 | 2814
6 530 64 416 | —352
6 5370 | 2106 | 2556 | 3100 | 2270 | 1060 +88 | 488 | 4224 | —107 | 5504 | 2003
=843
TABLE 11

ANALYSIS OF SINGLE-STRINGER BEAM BY SUCCESSIVE SHEAR-FAULT REDUCTION—SECOND CYCLL

G0 0K 0.467; 14=0.0158=0.120 54 inA]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Bay | Sta- ar Fy, L IP—0a1 Ar T ASce | AFL SF | SFC, | SFC; | SKFC AoF Aoy, oF oL,
tion {(Ib/sq in.) (1b) (Ib/sq in.)|(b/sq in.)|(b/sq in.)i(Ib/sq in)|  (ib) (Ib) (b) (lb) (Ib) (Ib) |(b/sq in.)|(Ib/sq in.){(b/sq in.){(1b/sq in.)
0. 0 0 0 0
1 3578 429 | 444 | —315 T
1| 1308 44 799 4 | 285 | T Zo | 48 | -1 | -4 12 1200 801
2 - T s q01 | 435 | —s4
2 | 2389 879 1441 | 18 | 443 o2 | 40 | —13 | —46 | 421 | o3 1462
3 T 2000 348 | 434 | —s6
3 | aase 1313 1979 1310 612 o7 | 422 | 5 | —16 +8 3273 | 1087
4 a 2988 25 | 383 | —108 T
1| 4050 1696 2366 1693 791 —r2 | 427 | —45 | —133 +63 3926 2499
5 T 1497 | 180 | 469 | —2s9
5 | 4ne | 2165 2814 1905 890 42 | -5 | -1 +6 4705 2890
6 | 607 73 | 05 | —os2
6 | 5594 2470 2993 2601 1213 +77 | 41 | 197 —93 5781 2000
=764 ]




TABLE 12
ANALYSIS OF MULTISTRINGER BEAM BY SUCCESSIVE SHEAR-FAULT REDUCTION—TYPICAL CYCLE FOR ADJUSTMENT OF
STRINGER B
(;.‘—A:=0':;%;<58=0.883; tAz=0.015X8=0.120 sq in.]
1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 7 18 19 20
oa oc oB ca-cp | ArdB 48 | AS*2 | gpoc | arse 2c | a8% | b Fs | AFs | SF | SFC, | SFC; | SFC | Acs 0B
Bay | Station CE CE
(bjsq in.)| (bjsq in.) | (bfsa in)|(bjsq in)| Abjsq in)|(bjsain)| ab) |b/sq in)|Gbfsain)|Abjsain)| @b) | Gb) | @b) | ab) | ap) | ab) | ab) | @b) jdbjsqin) dbjsq in)
0 0 0 0 0
1 4696 564 2901 348 | 216 204 | +12
1 1112 840 952 160 41 112 9% 204 —1 6 | -7 | +s8 985
2 4555 547 2802 336 | ou 213 2
2 2079 1518 1774 305 269 256 226 417 4 | 41| +5 | -= 1753
3 4286 515 2576 310 | 205 189 | +16
3 2998 1936 2370 628 555 434 384 606 —1 4l -5 | 420 2390
4 3731 418 2192 23 | 185 189 | —4
4 3041 2200 2875 1066 942 675 596 795 Z12 | 41| -1 +40 2015
5 2789 335 1596 192 | 148 191 | -48
5 5000 2203 3320 1680 1484 1117 986 986 —3 | +12 | +9 | —30 3290
6 1305 157 610 73 84 o4 | —10
6 6355 2020 3399 2056 2610 1379 1220 | 1080 | +3 | +3 -9 3390
==—36
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